A-level Mathematics
MM03
Mark scheme

June 2015

Version 1.0: Final

Mark schemes are prepared by the Lead Assessment Writer and considered, together with the relevant questions, by a panel of subject teachers. This mark scheme includes any amendments made at the standardisation events which all associates participate in and is the scheme which was used by them in this examination. The standardisation process ensures that the mark scheme covers the students' responses to questions and that every associate understands and applies it in the same correct way. As preparation for standardisation each associate analyses a number of students' scripts. Alternative answers not already covered by the mark scheme are discussed and legislated for. If, after the standardisation process, associates encounter unusual answers which have not been raised they are required to refer these to the Lead Assessment Writer.

It must be stressed that a mark scheme is a working document, in many cases further developed and expanded on the basis of students' reactions to a particular paper. Assumptions about future mark schemes on the basis of one year's document should be avoided; whilst the guiding principles of assessment remain constant, details will change, depending on the content of a particular examination paper.

Further copies of this mark scheme are available from aqa.org.uk

Key to mark scheme abbreviations

M	mark is for method
m or dM	mark is dependent on one or more M marks and is for method
A	mark is dependent on M or m marks and is for accuracy
B	mark is independent of M or marks and is for method and accuracy
E	mark is for explanation
Jor ft or F	follow through from previous incorrect result
CAO	correct answer only
CSO	correct solution only
AWFW	anything which falls within
AWRT	anything which rounds to
ACF	any correct form
AG	answer given
SC	special case
OE	or equivalent
A2,1	2 or 1 (or 0) accuracy marks
$-x \mathrm{EE}$	deduct x marks for each error
NMS	no method shown
PI	possibly implied
SCA	substantially correct approach
c	candidate
sf	significant figure(s)
dp	decimal place(s)

No Method Shown

Where the question specifically requires a particular method to be used, we must usually see evidence of use of this method for any marks to be awarded.

Where the answer can be reasonably obtained without showing working and it is very unlikely that the correct answer can be obtained by using an incorrect method, we must award full marks. However, the obvious penalty to candidates showing no working is that incorrect answers, however close, earn no marks.

Where a question asks the candidate to state or write down a result, no method need be shown for full marks.

Where the permitted calculator has functions which reasonably allow the solution of the question directly, the correct answer without working earns full marks, unless it is given to less than the degree of accuracy accepted in the mark scheme, when it gains no marks.

Otherwise we require evidence of a correct method for any marks to be awarded.

Question	Solution	Marks	Total	Comments
1	$[F]=\mathrm{MLT}^{-2}$	B1		B1: Correct dimensions of F
	$\begin{aligned} \mathrm{MLT}^{-2} & =\left(\mathrm{LT}^{-1}\right)^{\alpha}\left(\mathrm{L}^{2}\right)^{\beta}\left(\mathrm{ML}^{-3}\right)^{\gamma} \\ & =\mathrm{M}^{\gamma} \mathrm{L}^{\alpha+2 \beta-3 \gamma} \mathrm{~T}^{-\alpha} \end{aligned}$	M1 m1		M1: Substituting the dimensions of the quantities into the given equation to obtain RHS correctly. m 1 : Collecting indices on RHS. Could be implied by later work.
	$\left.\begin{array}{l} \gamma=1 \\ \alpha+2 \beta-3 \gamma=1 \\ -\alpha=-2 \end{array}\right\}$	$\begin{aligned} & \text { A1 } \\ & \text { m1 } \end{aligned}$	6	A1: $\gamma=1$ m 1 : Two correct equations for α and β.
	$\alpha=2 \quad, \quad \beta=1$	A1		A1: Correct values for α and β. Condone use of units instead of dimensions.
	Total		6	

(a)	Alternative: $\left.\begin{array}{l} I \mathrm{j}=0.5(5 \cos \alpha \mathrm{i}+5 \sin \alpha \mathrm{j})-0.5(3 \mathrm{i}) \\ 2.5 \cos \alpha-1.5=0 \\ \cos \alpha=0.6 \\ \sin \alpha=0.8 \\ I=0.5(5 \times 0.8) \\ I=2 \end{array}\right\}$	B1 M1 A1	3	B1: Correct vector equation. M1: Correct value for $\sin \alpha$. A1:Correct impulse.
(b)	Alternative: $\begin{aligned} & 3=3 \sqrt{2} \sin \beta \\ & \cos \beta=\frac{1}{\sqrt{2}} \\ & \mathrm{e}=\frac{3 \sqrt{2}\left(\frac{1}{\sqrt{2}}\right)}{\frac{2}{0.5}} \\ & \mathrm{e}=\frac{3}{4} \text { or } 0.75 \end{aligned}$	$\begin{aligned} & \text { B1 } \\ & \text { B1 } \\ & \text { M1 } \\ & \text { A1 } \end{aligned}$	4	B1: Correct equation for motion parallel B 1 : Value for $\cos \beta$ or $\beta=45^{\circ}$. M1: Correct expression for e or correct ed A1:Correct impulse.

Q	Solution	Marks	Total	Comments
	second collision \Rightarrow $\begin{aligned} & \frac{5}{12} u e-\frac{5}{36} u>\frac{1}{9} u \\ & \frac{5}{12} u e>\frac{9}{36} u \\ & e>\frac{3}{5} \text { or } 0.6 \end{aligned}$ Equal radii \Rightarrow Velocities are parallel to the line of centr	M1 A1F B1 B1		M1: For the inequality $v_{3}>v_{1}$ A1F: Correct value of k. FT their $v_{3}>v_{1}$. The value of k must be less than 1 and greater than 0 to score A1F B1: Comment about equal radii or same size. B1: Comment about the line of centres.
	Total		16	

(b) Alternative:

$2 m\left(\frac{5}{9} u\right)=2 m v_{3}+6 m v_{4}$
$\frac{10}{9} u=2 v_{3}+6 v_{4}$
$e\left(\frac{5}{9} u\right)=v_{4}-v_{3}$
$\frac{10}{9} u=2 v_{3}+6\left(\frac{5}{9} u e+v_{3}\right)$
$8 v_{3}=\frac{10}{9} u-\frac{10}{3} u e$
$v_{3}=\frac{5}{36} u-\frac{5}{12} u e$
OE
second collision \Rightarrow
$\frac{5}{36} u-\frac{5}{12} u e<-\frac{1}{9} u$
$\frac{5}{12} u e>\frac{9}{36} u$
$e>\frac{3}{5}$ or 0.6

M1A1		M1: Equation with three momentum terms. A1: Correct equation.
M1A1		M1: Newton's Law of Restitution. (Allow sign errors.) A1: Correct equation.
$\begin{aligned} & \mathrm{m} 1 \mathrm{~A} 1 \\ & \mathrm{~F} \end{aligned}$		m 1 : Solving equations to find the velocity of B after the second collision. A1F: Correct velocity of B after the second collision. FT their equations.
M1		M1: For the inequality $v_{3}<v_{1}$
A1F		A1F: Correct value of k. The value of k must be less than 1 and greater than 0 to score A1F

		B1 M1 A1	3	B1: Correct right angled velocity triangle. Could be implied by later working. M1: Use of trigonometry to find speed. A1: Correct speed. CAO.
	Total		13	

(a)(ii)	Alternative: Angle for shorter time : 45.58° $\begin{aligned} & t\left(50 \cos 30^{\circ}+35 \cos 45.58^{\circ}\right)=8 \\ & \left(t=\frac{8}{50 \cos 30^{\circ}+35 \cos 45.58^{\circ}}\right) \\ & t=0.118 \mathrm{~h} \text { or } 7.08 \mathrm{~min} \end{aligned}$	B1 M1A1 m1 A1F	5	B1: Selecting the smaller of their two angles from part (a). M1: For $50 \cos 30^{\circ} \pm 35 \cos 46^{\circ}$ A1: Correct expression. m 1 : Using distance over speed. A1F: Correct time. FT their angle. Full marks can be scored by using both angles and choosing the shorter time. If both times calculated and none selected do not award final A1 mark.
	Angle for shorter time : 45.58° $\begin{aligned} & \frac{d}{\sin 30^{\circ}}=\frac{8}{\sin 104.42^{\circ}} \\ & d=4.130 \mathrm{~km} \\ & \left(t=\frac{4.130}{35}\right) \\ & t=0.118 \mathrm{~h} \text { or } 7.08 \mathrm{~min} \end{aligned}$	B1 M1 A1 m1		B1: Selecting the smaller of their two angles from part (a). M1: Using the sine rule to find the distance travelled by the frigate with their angle. A1: Correct distance m 1 : Using distance over speed.
		A1F	5	A1: Correct time. FT their angle. Full marks can be scored b using both angles and choosing the shorter time. If both times calculated and none selected do not award final A1 mark.

\begin{tabular}{|c|c|c|c|c|}
\hline Question \& Solution \& Marks \& Total \& Comments

\hline \multirow[t]{6}{*}{7 (a)

(b)} \& \[
$$
\begin{aligned}
& y=u \sin (\alpha-\vartheta) t-\frac{1}{2} g \cos \vartheta t^{2} \\
& 0=u \sin (\alpha-\vartheta) t-\frac{1}{2} g \cos \vartheta t^{2} \\
& t=\frac{2 u \sin (\alpha-\vartheta)}{g \cos \vartheta} \\
& u \sin \alpha-g t=0
\end{aligned}
$$

\] \& | M1 |
| :--- |
| A1 |
| m1 |
| A1 | \& 4 \& | M1: Expression for perpendicular height of particle above the plane. Accept wrong angles for M1 but not sin and cos in wrong places. |
| :--- |
| A1: Correct expression with $y=0$. |
| m 1 : Solving for non-zero t. |
| A1: Correct t. |

\hline \& $$
t=\frac{u \sin \alpha}{g}
$$ \& M1 \& \multirow{5}{*}{5} \& M1: Velocity equation to find time to A.

\hline \& $$
\frac{u \sin \alpha}{g}=\frac{2 u \sin (\alpha-\vartheta)}{g \cos \vartheta}
$$ \& A1 \& \& A1: Correct time.

\hline \& $$
\begin{aligned}
& \sin \alpha \cos \vartheta=2 \sin (\alpha-\vartheta) \\
& \sin \alpha \cos \vartheta=2 \sin \alpha \cos \vartheta-2 \cos \alpha \sin \vartheta
\end{aligned}
$$ \& m1 \& \& m 1 : Forming an equation using their time from part (a) and this time.

\hline \& $$
\left.\begin{array}{l}
\sin \alpha \cos \vartheta=2 \cos \alpha \sin \vartheta \\
\frac{\sin \alpha}{\cos \alpha}=2 \frac{\sin \vartheta}{\cos \vartheta}
\end{array}\right\}
$$

$$
\tan \alpha=2 \tan \vartheta
$$ \& M1 \& \& M1: Use of identity to eliminate compound expressions. It is not enough to only expand $\sin (\alpha-\theta)$ in the expression in part (a) without anything else.

\hline \& \& A1 \& \& A1: Seeing required expression derived with $k=2$.

\hline \& Total \& \& 9 \&

\hline \& TOTAL \& \& 75 \&

\hline
\end{tabular}

