

A-level Mathematics

MM03 Mark scheme

6360 June 2015

Version 1.0: Final

Mark schemes are prepared by the Lead Assessment Writer and considered, together with the relevant questions, by a panel of subject teachers. This mark scheme includes any amendments made at the standardisation events which all associates participate in and is the scheme which was used by them in this examination. The standardisation process ensures that the mark scheme covers the students' responses to questions and that every associate understands and applies it in the same correct way. As preparation for standardisation each associate analyses a number of students' scripts. Alternative answers not already covered by the mark scheme are discussed and legislated for. If, after the standardisation process, associates encounter unusual answers which have not been raised they are required to refer these to the Lead Assessment Writer.

It must be stressed that a mark scheme is a working document, in many cases further developed and expanded on the basis of students' reactions to a particular paper. Assumptions about future mark schemes on the basis of one year's document should be avoided; whilst the guiding principles of assessment remain constant, details will change, depending on the content of a particular examination paper.

Further copies of this mark scheme are available from aqa.org.uk

Copyright © 2015 AQA and its licensors. All rights reserved.

AQA retains the copyright on all its publications. However, registered schools/colleges for AQA are permitted to copy material from this booklet for their own internal use, with the following important exception: AQA cannot give permission to schools/colleges to photocopy any material that is acknowledged to a third party even for internal use within the centre.

Key to mark scheme abbreviations

М	mark is for method
m or dM	mark is dependent on one or more M marks and is for method
Α	mark is dependent on M or m marks and is for accuracy
В	mark is independent of M or m marks and is for method and accuracy
Е	mark is for explanation
or ft or F	follow through from previous incorrect result
CAO	correct answer only
CSO	correct solution only
AWFW	anything which falls within
AWRT	anything which rounds to
ACF	any correct form
AG	answer given
SC	special case
OE	or equivalent
A2,1	2 or 1 (or 0) accuracy marks
–x EE	deduct x marks for each error
NMS	no method shown
PI	possibly implied
SCA	substantially correct approach
С	candidate
sf	significant figure(s)
dp	decimal place(s)

No Method Shown

Where the question specifically requires a particular method to be used, we must usually see evidence of use of this method for any marks to be awarded.

Where the answer can be reasonably obtained without showing working and it is very unlikely that the correct answer can be obtained by using an incorrect method, we must award **full marks**. However, the obvious penalty to candidates showing no working is that incorrect answers, however close, earn **no marks**.

Where a question asks the candidate to state or write down a result, no method need be shown for full marks.

Where the permitted calculator has functions which reasonably allow the solution of the question directly, the correct answer without working earns **full marks**, unless it is given to less than the degree of accuracy accepted in the mark scheme, when it gains **no marks**.

Otherwise we require evidence of a correct method for any marks to be awarded.

Question	Solution	Marks	Total	Commonto
-			TOLAI	Comments
1	$[F] = MLT^{-2}$	B1		B1: Correct dimensions of
				F
	$(1 - 1)^{\alpha} (1 - 1)^{\beta} (1 - 1)^{\beta} (1 - 1)^{\beta}$			M1: Substituting the
	$MLT^{-2} = \left(LT^{-1}\right)^{\alpha} \left(L^{2}\right)^{\beta} \left(ML^{-3}\right)^{\gamma}$	M1		dimensions of the quantities
				into the given equation to
				obtain RHS correctly.
	$= M^{\gamma} L^{\alpha+2\beta-3\gamma} T^{-\alpha}$	1		
		m1		m1: Collecting indices on
				RHS. Could be implied by
				later work.
	$\gamma = 1$			
		A1		A1: $\gamma = 1$
	$ \begin{array}{l} \gamma = 1 \\ \alpha + 2\beta - 3\gamma = 1 \\ -\alpha = -2 \end{array} $	m1		m1: Two correct equations
	$-\alpha = -2$		6	for α and β .
	а <u>–</u>)		Ū	for α and p .
		A 1		
		A1		A1: Correct values for α and
	lpha=2 , $eta=1$			β.
				Condone use of units
				instead of dimensions.
	Total		6	

Question	Solution	Marks	Total	Comments
2 (a)	$x = u \cos \alpha t$	M1		M1: Correct expression for
	$t = \frac{x}{u \cos \alpha}$	A1		horizontal displacement. A1: Correct expression for <i>t</i> .
	$y = u \sin \alpha t - \frac{1}{2}gt^2$	M1		M1. Competenzation for
	$y = u \sin \alpha \times \frac{x}{u \cos \alpha} - \frac{1}{2} (9.8) \left(\frac{x}{u \cos \alpha}\right)^2$			M1: Correct expression for vertical displacement. Allow sign errors.
(b)(i)		m1		m1: Elimination of <i>t</i> from
	$y = x \tan \alpha - \frac{4.9x^2}{u^2 \cos^2 \alpha} \qquad \text{AG}$			equation for vertical displacement.
	$-s = s \tan 55^{\circ} - \frac{4.9s^2}{21^2 \cos^2 55^{\circ}}$	A1	5	A1: Correct result from correct working.
(ii)	$s = \frac{\left(1 + \tan 55^{\circ}\right) 21^2 \cos^2 55^{\circ}}{4.9}$			Penalise use of $g = 9.81$.
	<i>s</i> = 71.9	M1		M1: Substituting $\pm s$ for x and y .
	$\dot{x} = 21\cos 55^{\circ} = 12.045$	m1		m1: Making <i>s</i> the subject of their equation.
	$\dot{y} = 21\sin 55^{\circ} - 9.8 \times \frac{71.895}{21\cos 55^{\circ}}$	A1	3	A1: AWRT 71.9 Condone use of $g = 9.81$ which gives 71.8.
	or $\dot{y}^2 = (21\sin 55^\circ)^2 - 2(9.8)(-71.895)$	B1		B1: Correct expression or value for horizontal
	$\dot{y} = -41.292$			component of velocity.
		M1		M1: Correct expression or value for vertical
	$\tan^{-1} \frac{-41.292}{21\cos 55^{\circ}}$		5	component of velocity, with their answer to (b)(i).
	$=-74^{\circ}$ or 74°	A1		A1: Correct expression or value.
		m1		m1: Use of tan with their velocity components.
		A1		A1: Correct angle to nearest degree. CAO.
	Total		13	

(b)(ii)	Alternative:			
	$y = x \tan \alpha - \frac{4.9x^2}{u^2 \cos^2 \alpha}$			
	$\frac{dy}{dx} = \tan \alpha - \frac{2(4.9)x}{u^2 \cos^2 \alpha}$	B1		B1: Correct derivative.
	$= \tan 55^{\circ} - \frac{2(4.9)(71.895)}{21^2 \times \cos^2 55^{\circ}}$	M1		M1: Substituting values.
	= -3.428	A1		A1: Correct value of the derivative
	The angle = $\tan^{-1}(-3.428)$	m1		m1: Use of tan to find the
	$=-74^{\circ}$ or 74°	A1	5	angle. A1: Correct angle to nearest degree. CAO.

Question	Colution	Marka	Tatal	Commonto
Question	Solution	Marks	Total	Comments
3 (a)	$I \qquad 2.5 \text{ kg m s}^{-1}$	B1		B1: Momentum – Impulse triangle with right angle. Can be implied by a correct equation.
(b)	$2.5^2 = 1.5^2 + I^2$	M1	3	M1: Use of Pythagoras to obtain a correct equation. OE for example $5^2 = 3^2 + \left(\frac{I}{0.5}\right)^2$
	I = 2 N s	A1		A1: Correct impulse.
	After the impact: $2\sqrt{2}$ m s ⁻¹	B1	4	B1: Sight of perpendicular component as 4 <i>e</i> . Could be implied by a correct equation.
	$3\sqrt{2} \text{ m s}^{-1} 4e$ 3 m s^{-1}	B1		B1: Correct velocity diagram, PI by a correct equation
	$(3\sqrt{2})^2 = (4e)^2 + 3^2$	M1		M1: Use of Pythagoras to obtain a correct equation. A1: Correct coefficient of
	$(3\sqrt{2})^2 = (4e)^2 + 3^2$ $e = \frac{3}{4}$ or 0.75	A1		restitution.
	Total		7	

(a)	Alternative: $I\mathbf{j} = 0.5(5\cos\alpha\mathbf{i} + 5\sin\alpha\mathbf{j}) - 0.5(3\mathbf{i})$ $2.5\cos\alpha - 1.5 = 0$ $\cos\alpha = 0.6$ $\sin\alpha = 0.8$ $I = 0.5(5 \times 0.8)$ I = 2	B1 M1 A1	3	B1:Correct vector equation. M1:Correct value for sinα. A1:Correct impulse.
(b)	Alternative: $3 = 3\sqrt{2} \sin \beta$ $\cos \beta = \frac{1}{\sqrt{2}}$ $e = \frac{3\sqrt{2}\left(\frac{1}{\sqrt{2}}\right)}{\frac{2}{0.5}}$ $e = \frac{3}{4} \text{ or } 0.75$	B1 B1 M1 A1	4	B1: Correct equation for motion parallel t B1: Value for $\cos\beta$ or $\beta = 45^{\circ}$. M1: Correct expression for <i>e</i> or correct eq A1: Correct impulse.

Question	Solution	Marks	Total	Comments
4 (a) (i)	$mu = mv_1 + 2mv_2$ OE	M1 A1		M1: Equation with three momentum terms.
(ii)	$u = v_1 + 2v_2$ $\frac{2}{3}u = v_2 - v_1$ OE $3v_2 = \frac{5}{3}u$	M1 A1		A1: Correct equation. M1: Newton's Law of Restitution. (Allow sign errors.)
(b)	$v_{2} = \frac{5}{9}u \text{AG}$ $v_{1} = u - \frac{10}{9}u$	A1	6	A1: Correct equation. A1: Correct speed of <i>B</i> , from correct working.
	$v_1 = -\frac{1}{9}u$ The speed of A is $\frac{1}{9}u$ $\frac{5}{9}u$ 0	A1		A1: Correct speed of <i>A</i> . Do not accept negative speed
	e v_{3} e v_{4} $2m\left(\frac{5}{9}u\right) = -2mv_{3} + 6mv_{4}$ OE	M1 A1		M1: Equation with three momentum terms. A1: Correct equation
	$\frac{10}{9}u = -2v_3 + 6v_4$ $e\left(\frac{5}{9}u\right) = v_3 + v_4 \qquad \text{OE}$	M1 A1		M1: Newton's Law of Restitution. (Allow sign errors.) A1: Correct equation
(c)	$\frac{10}{9}u = -2v_3 + 6\left(\frac{5}{9}ue - v_3\right)$ $8v_3 = \frac{10}{3}ue - \frac{10}{9}u$ $v_3 = \frac{5}{12}ue - \frac{5}{36}u$ OE	m1 A1F	8	m1: Solving equations to find the speed of B after the second collision. A1F: Correct speed of B after the second collision. FT their equations

Q	Solution	Marks	Total	Comments
		M1		
	second collision \Rightarrow			M1: For the inequality $v_3 > v_1$
	$\frac{5}{12}ue - \frac{5}{36}u > \frac{1}{9}u$ $\frac{5}{12}ue > \frac{9}{36}u$ $e > \frac{3}{5} \text{ or } 0.6$	A1F		A1F: Correct value of <i>k</i> . FT their $v_3 > v_1$. The value of <i>k</i> must be less than 1 and greater than 0 to score A1F
		B1 B1		B1: Comment about equal radii or same size.B1: Comment about the line of centres.
	Equal radii \Rightarrow Velocities are parallel to the line of centre			
	Total		16	

(b) Alternative: $\frac{5}{9}u = 0$		
e $(2m)$ v_3 e $(6m)$ v_4		
$2m\left(\frac{5}{9}u\right) = 2mv_3 + 6mv_4$ $\frac{10}{9}u = 2v_3 + 6v_4$	M1A1	M1: Equation with three momentum terms. A1: Correct equation.
$ e\left(\frac{5}{9}u\right) = v_4 - v_3 \frac{10}{9}u = 2v_3 + 6\left(\frac{5}{9}ue + v_3\right) $	M1A1	M1: Newton's Law of Restitution. (Allow sign errors.) A1: Correct equation.
$8v_{3} = \frac{10}{9}u - \frac{10}{3}ue$ $v_{3} = \frac{5}{36}u - \frac{5}{12}ue$ OE	m1A1 F	m1: Solving equations to find the velocity of B after the second collision. A1F: Correct velocity of B after the second collision. FT their equations.
second collision \Rightarrow $\frac{5}{36}u - \frac{5}{12}ue < -\frac{1}{9}u$	M1	M1: For the inequality $v_3 < v_1$
$\frac{5}{12}ue > \frac{9}{36}u$ $e > \frac{3}{5} \text{ or } 0.6$	A1F	A1F: Correct value of k . The value of k must be less than 1 and greater than 0 to score A1F

Question	Solution	Marks	Total	Comments
5	$\cos \alpha = \frac{3}{5} \text{ or } 0.6 \text{ and } \cos \beta = \frac{5}{13} \text{ or } 0.3846$ $2(4\cos \alpha) + 1(2.6\cos \beta) = 2v_A + 1v_B$ $2(2.4) + 1(1) = 2v_A + 1v_B$	B1 M1A1		B1: Correct values for $\cos \alpha$ and $\cos \beta$. M1: Four term momentum equation along the line of centres. A1: Correct equation. May be in terms of α and β .
	$\frac{4}{7}(4\cos\alpha - 2.6\cos\beta) = v_B - v_A$ $\frac{4}{7}(2.4 - 1) = v_B - v_A$ $\begin{cases} 5.8 = 2v_A + v_B\\ 0.8 = v_B - v_A \end{cases}$	M1 A1		M1: Newton's Law of Restitution. (Allow sign errors.) A1: Correct equation.
	$\begin{bmatrix} 0.8 = v_B - v_A \\ v_A = \frac{5}{3} \text{ms}^{-1} \end{bmatrix}$	A1	11	A1: Correct velocity of <i>A</i> . AWRT 1.67
	$v_B = \frac{37}{15} \text{ ms}^{-1}$	A1		A1: Correct velocity of <i>B</i> . AWRT 2.47
	$V_A = \sqrt{\left(\frac{5}{3}\right)^2 + \left(4\sin\alpha\right)^2}$	m1		m1: Finding speed of A with their v_A . May
	$V_A = \sqrt{\left(\frac{5}{3}\right)^2 + (3.2)^2} = 3.61 \text{ ms}^{-1}$	A1		be in terms of α and β A1: Correct speed. AWRT 3.61
	$V_{B} = \sqrt{\left(\frac{37}{15}\right)^{2} + \left(2.6\sin\beta\right)^{2}}$	m1		m1: Finding speed of <i>B</i> with their v_B . May
	$V_B = \sqrt{\left(\frac{37}{15}\right)^2 + (2.4)^2} = 3.44 \text{ ms}^{-1}$	A1		be in terms of α and β A1: Correct speed. AWRT 3.44
	Total		11	

6 (a)(i)				
	35 α β 357 β 30° -50	B1 B1		 B1: For one velocity triangle, could be implied by later working. B1: For the other velocity triangle drawn together or separately, could be implied by the correct 2nd angle
(ii)	$\frac{\sin \alpha}{50} = \frac{\sin 30^\circ}{35} \text{ or } \frac{\sin \beta}{50} = \frac{\sin 30^\circ}{35}$	M1	5	M1: Correct use of sine rule to find α or β .
	$ \begin{array}{c} \alpha = 45.58^{\circ} \\ \beta = 134.42^{\circ} \end{array} $	A1		A1: Either angle correct.
	Bearings: $\begin{array}{c} 346^{\circ} \\ 074^{\circ} \end{array}$	A1		A1: Two correct bearings. Accept 74°.
	Angle for shorter time : 45.58°	B1	5	B1: Selecting the smaller of their two angles from part
	$\frac{{}_{F}v_{S}}{\sin 104.42^{\circ}} = \frac{35}{\sin 30^{\circ}}$	M1		(a). M1: Using the sine rule to find the speed of the frigate
(b)	$_{F}v_{S} = 67.79 \text{ km h}^{-1}$	A1		relative to the ship, with their angle. A1: Correct speed.
	$t = \frac{8}{67.79}$	m1		m1: Using distance over
	= 0.118 h or 7.08 min	A1F		speed. A1F: Correct time. FT their speed. Full marks can be scored by using both angles and choosing the shorter time. If both times calculated and none selected do not award final A1 mark.

v_F v_S N 30° -50	B1	3	B1: Correct right angled velocity triangle. Could be implied by later working.
$v_F = 50 \sin 30^\circ$ OE $v_F = 25 \text{ kmh}^{-1}$	M1 A1		M1: Use of trigonometry to find speed. A1: Correct speed. CAO.
Total		13	

(a)(ii)	Alternative:			
	Angle for shorter time : 45.58°	B1		B1: Selecting the smaller of their two angles from part
	$t(50\cos 30^\circ + 35\cos 45.58^\circ) = 8$	M1A1		(a). M1: For
	$\left(t = \frac{8}{50\cos 30^\circ + 35\cos 45.58^\circ}\right)$	m1		50 cos 30° ± 35 cos 46° A1: Correct expression. m1: Using distance over speed.
	<i>t</i> = 0.118 h or 7.08 min	A1F	5	A1F: Correct time. FT their angle. Full marks can be scored by using both angles and choosing the shorter time. If both times calculated and none selected do not award final A1 mark.
	Alternative:			
	Angle for shorter time : 45.58°	B1		B1: Selecting the smaller of their two angles from part
	$\frac{d}{\sin 30^{\circ}} = \frac{8}{\sin 104.42^{\circ}}$	M1		(a). M1: Using the sine rule to find the distance travelled
	d = 4.130 km	A1		by the frigate with their angle.
	$\left(t = \frac{4.130}{35}\right)$	m1		A1: Correct distance m1: Using distance over speed.
	$t = 0.118 \mathrm{h}$ or 7.08 min			speed.
		A1F	5	A1: Correct time. FT their angle. Full marks can be scored b using both angles and choosing the shorter time. If both times calculated and none selected do not award final A1 mark.

Question	Solution	Montra	Total	Commonto
Question	Solution	Marks	Total	Comments
7 (a)	$y = u\sin(\alpha - \vartheta)t - \frac{1}{2}g\cos\vartheta t^2$	M1		M1: Expression for perpendicular height of
	$0 = u\sin(\alpha - \vartheta)t - \frac{1}{2}g\cos\vartheta t^2$	A1	4	particle above the plane. Accept wrong angles for
	$t = \frac{2u\sin(\alpha - \vartheta)}{g\cos\vartheta}$	m1	4	M1 but not sin and cos in
(b)	$g\cos \vartheta$	A1		wrong places. A1: Correct expression with
				y = 0. m1: Solving for non-zero <i>t</i> .
	$u\sin\alpha - gt = 0$			A1: Correct t .
	$t = \frac{u \sin \alpha}{2}$	M1		M1: Velocity equation to find time to A.
	g			
	$\frac{u\sin\alpha}{g} = \frac{2u\sin(\alpha - \vartheta)}{g\cos\vartheta}$	A1		A1: Correct time.
	$g g \cos \theta$	1		m 1. Forming on equation
	$\sin \alpha \cos \vartheta = 2\sin(\alpha - \vartheta)$ $\sin \alpha \cos \vartheta = 2\sin \alpha \cos \vartheta - 2\cos \alpha \sin \vartheta$	m1		m1: Forming an equationusing their time from part(a) and this time.
	$\sin\alpha\cos\vartheta = 2\cos\alpha\sin\vartheta$	M1		M1: Use of identity to
	$\frac{\sin\alpha}{\cos\alpha} = 2\frac{\sin\vartheta}{\cos\vartheta}$		5	eliminate compound expressions. It is not enough
				to only expand $sin(\alpha - \theta)$ in the expression in part (a)
	$\tan \alpha = 2 \tan \vartheta$			without anything else.
		A1		A 1. Sooing required
				A1: Seeing required expression derived
				with $k = 2$.
	Total		9	
	TOTAL		75	

(b)	Alternative: Taking x and y axes parallel and perpendicular to the plane respectively and			
	using $\tan \theta = \frac{-\dot{y}}{\dot{x}}$ or equivalent,			
	$\left(u\cos(\alpha-\theta) - g\frac{2u\sin(\alpha-\theta)}{g\cos\theta}\sin\theta\right)\tan\theta = -u\sin(\alpha-\theta) + \frac{g2u\sin(\alpha-\theta)}{g\cos\theta}\cos\theta$	M1 A1		M1: Correct terms, allow sign errors. A1: All correct
	$\cos(\alpha - \theta)\tan\theta = \sin(\alpha - \theta)(2\tan^2\theta + 1)$			
	$(\cos\alpha\cos\theta + \sin\alpha\sin\theta)\tan\theta = (\sin\alpha\cos\theta - \sin\theta\cos\alpha)(2\tan^2\theta + 1)$	M1		M1: Use of identities to eliminate compound expressions.
	$\tan \alpha \tan^2 \theta + \tan \alpha - 2 \tan^3 \theta - 2 \tan \theta = 0$			
	$\tan \alpha \left(1 + \tan^2 \theta\right) = 2 \tan \theta \left(1 + \tan^2 \theta\right)$	m1		m1: Rearranging to the required form.
	$\tan \alpha = 2 \tan \theta$	A1		A1: Seeing required expression derived with $k = 2$.
			5	